

2013 International Symposium on Extreme Ultraviolet Lithography

Toyama, Japan • 6 - 10 October, 2013

Accelerating the next technology revolution

Understanding the mechanism of capping layer damage and development of a robust capping material for 16 nm HP EUV mask

II-Yong Jang ¹, Arun John ¹, Frank Goodwin ¹ Su-Young Lee², Seong-Sue Kim²

- ¹ SEMATECH
- ² Samsung Electronics

Outline

- Current status
- Experimental conditions
- Cause of Ru damage
- Simulation results
- How to mitigate Ru damage
 - Process improvement
 - Development of new material
- Summary

Ru damage

Absorber pattern(Ta)

Capping layer

Multi layer (Mo/Si)

Substrate (LTEM)

. Protect ML from damage

: Dry Etch, Repair, Cleaning

. Requirements

- : High EUV reflectance
- : Oxidation resistance
- : Durability in plasma and chemical
- : Stability in high temperature
- → Ru/Ru-compound for capping layer

. Mask process

- : Physical force
- : Chemical reaction
- : High temperature
- : UV radiation
- : Oxidation

. Results

- : ML oxidation
- : Reflectivity drop
- : CD change in WF

Ru damage during mask process

Blank Supplier Substrate

ML deposition

Capping layer
deposition

Annealing
Absorber deposition

Maskshop

Resist patterning — Absorber etch — Cleaning Cleaning Repair

- ① Properties of capping layer
 - : Properties of material in mechanical and chemical stress
- **② Annealing in High temperature**
 - : Oxidation, change in material properties
- 3 Plasma etch: oxidation, erosion by corrosive gas, stress by ion bombardment
- **4** Cleaning process
 - : Oxidation, change in material properties

Experimental

- Material
 - 6 inches sq. wafer for deposition of Ru and new capping material
 - Reactive sputtering using SEMATECH's IBD chamber
- Process
 - In-situ. UV(IUV) cleaning at Mask Track, Anneal on hotplate

Analysis: Angle Resolved XPS, Four point probe

Change in film properties

Oxidation by annealing

- Conditions: 2.5nm-Ru, 10 min annealing, 3.5nm-probing depth
- O core: Annealing Temp $\uparrow \rightarrow$ RuOx gradually $\uparrow \rightarrow$ Ru oxidation (RuO₂)
- **Si core**: The SiOx peak (101.97eV) abruptly increase from 200°C. Si has been changed to SiOx by oxygen penetration
- → Ru and Si are oxidized by high temperature annealing process

Oxidation by IUV cleaning

- Conditions: 2.5nm-Ru, IUV cleaning (5X, 10X, 50X cycles), 3.5nm-probing depth
- Ru appears to be strongly oxidized by IUV cleaning
- Si under the Ru is also oxidized by IUV cleaning
- → During IUV process, oxygen penetrates Ru and finally reacts with Si

Mechanism of Ru damage

- . Mask is annealed in Air with HT and cleaned in IUV+DI
- . Oxygen diffuses to the surface
- . Clear region
 - Oxygen penetrates Ru film and reaches Si surface
 - : Ru \rightarrow RuOx (ductile \rightarrow brittle)
 - : Si \rightarrow SiOx
- . Dark region
 - Absorber protects oxygen penetration

. Volume expansion when $Si \rightarrow SiOx$

$$x_{si} = x_{ox} * \frac{N_{ox}}{N_{si}}$$

$$= x_{ox} * \frac{2.3*10^{22} \text{ molecules/cm}^3}{5*10^{22} \text{ molecules/cm}^3} = 0.46x_{ox}$$

. Tensile stress

. Properties change

- RuOx : brittle in stress
- SiOx: Poor adhesion to Ru

Simulation of the Ru damage

Simulation parameter

- S/W: ABAQUS (Finite Element Method)
- Element: four-node quadrilateral elements
- Unit element size(W x H): 1 nm x 1 nm
- Total number of Nodes: 37,756ea
- Total number of elements: 37,000ea
- Total Degree of Freedom: 75,512ea

Layer	Mate- rial	Thick (nm)	Width (nm)	Young's Modulus (GPa)	Poisson's ratio
Abs	TaN	70	200	186	0.34
Сар	Ru	2.5	-	447	0.30
Si	Si	4.1	-	188	0.28

Boundary condition

Boundary condition: 1-D D-G model

$$x \cong \frac{B}{A}(t+\tau)$$

Simulation of the Ru damage

How to mitigate?

Mitigation of Ru damage – by process

. Annealing in vacuum

- No significant SiOx peak
 - → suppress Si oxidation
- Slight shift of Si peak due to RuSix formation

. Annealing in Low Temp. (@150°C)

- No significant SiOx peak
- Critical Temp. trigger oxidation of Si should be between 150°C and 200°C
- Less RuSix formation

. H₂ dosing

- Impossible to reduce the oxidized Si by H₂ flow
- Increases in peak intensity due to removal of carbon contamination

Mitigation of Ru damage – by new material

. Capping layer

- Suppress oxygen penetration
- Less oxidation
- Stable in chemical / plasma
- Ductile in mechanical stress
- No deterioration of optical properties
- Robust in mask process
- B₄C, new Ru compound

. Buffer layer

- Suppress oxygen penetration
- Less oxidation
- Robust in mask process
- Good adhesion btw Si and capping layer
- No deterioration of optical properties
- Ru/BL/top-Si

B₄**C** capping layer

. No EUVR deterioration is observed once B₄C is used as a capping layer instead of Ru

New Ru compound capping layer

- . Dosed "A" atom in Ru to suppress change in film property
- . The amount of Si oxidation is inversely proportional to the amount of incorporated "A" atom in RuA

Inserting buffer layer

- . SEMATECH has developed a buffer layer between Ru and Si
- . The purpose of buffer layer is to suppress the oxygen diffusion to Si
- . The Ru/BL/top-Si structure increases the durability of Ru in IUV process
- . Further optimization should be necessary for this structure.

Summary

Normalized durability

- . SEMATECH has disclosed the root cause of Ru damage and been developing a new material with state-of-the art IBD tool to solve the problem.
- . The most promising method will be verified on 6 in. sq. mask using mask shop's infrastructure in near future.

Acknowledgement

- . Deposition: Patrick Kearney and Alin Antohe from SEMATECH
- . XPS analysis: Prof. Carl Ventrice Jr. and Tyler Mowll from CNSE
- . **FEM simulation**: Prof. YongHoon Jang from Yonsei Univ.

Thank you!